Quantum Computing: HHL Algorithm
Background Quantum computing can bring exponential speedup over some classical algorithms. Most of the early-age algorithms are designed as proof of concept and thus lack of practical interests. Shor's algorithm for integer factorization is the first quantum algorithm that will bring practical applications: breaking the current RSA encryption on the internet. However, implementing Shor's algorithm requires the manipulation of thousands of qubits, which is far beyond today's engineering capability. The breakthrough starts with the appearance of Harrow-Hassidim-Lloyd (HHL) algorithm in 2009, which solves linear equations in logarithmic time. Solving linear equations is of great importance in almost all the scientific and engineering disciplines. It is also an indispensable subroute in many machine learning algorithms. Besides its wide applications, implementing HHL algorithm only requires tens of qubits and thus seems feasible in the near future. Along with the rise of deep