Review of Linear Algebra in Quantum Mechanics (V)
More about Orthonormal Basis First of all, consider any vector $|\psi\rangle$ expanded within an orthonormal basis $|\psi\rangle=\sum_{i=1}^n\psi_i|\epsilon_i\rangle$. Because of the orthonormal property \begin{equation}\langle \epsilon_i |\epsilon_j\rangle=\delta_{ij}\,,\tag{1}\end{equation} by applying $\langle\epsilon_i|$ on both sides of the expansion , we obtain $\psi_i = \langle \epsilon_i |\psi\rangle$. Since the relation \begin{equation}|\psi\rangle =\sum_{i=1}^n\psi_i|\epsilon_i\rangle = \sum_{i=1}^n \langle \epsilon_i |\psi\rangle\,|\epsilon_i\rangle = \sum_{i=1}^n |\epsilon_i\rangle\langle\epsilon_i |\psi\rangle\end{equation} holds for any $|\psi\rangle$, we obtain the completeness property \begin{equation} \sum_{i=1}^n |\epsilon_i\rangle\langle\epsilon_i |= \cal{I}\,,\tag{2}\end{equation} where $\cal{I}$ is the identity transformation that leaves any vector unchanged. Secondly, let's write an operator within the orthonormal basis \beg...