Review of Linear Algebra in Quantum Mechanics (V)
More about Orthonormal Basis
First of all, consider any vector $|\psi\rangle$ expanded within an orthonormal basis $|\psi\rangle=\sum_{i=1}^n\psi_i|\epsilon_i\rangle$. Because of the orthonormal property \begin{equation}\langle \epsilon_i |\epsilon_j\rangle=\delta_{ij}\,,\tag{1}\end{equation}
by applying $\langle\epsilon_i|$ on both sides of the expansion , we obtain $\psi_i = \langle \epsilon_i |\psi\rangle$. Since the relation \begin{equation}|\psi\rangle =\sum_{i=1}^n\psi_i|\epsilon_i\rangle = \sum_{i=1}^n \langle \epsilon_i |\psi\rangle\,|\epsilon_i\rangle = \sum_{i=1}^n |\epsilon_i\rangle\langle\epsilon_i |\psi\rangle\end{equation} holds for any $|\psi\rangle$, we obtain the completeness property \begin{equation} \sum_{i=1}^n |\epsilon_i\rangle\langle\epsilon_i |= \cal{I}\,,\tag{2}\end{equation} where $\cal{I}$ is the identity transformation that leaves any vector unchanged. Secondly, let's write an operator within the orthonormal basis \begin{equation} \cal{O}\, \Big[|\epsilon_1\rangle\,\,|\epsilon_2\rangle\,\,\cdots\,\,| \epsilon_n\rangle\Big]=\Big[|\epsilon_1\rangle\,\,|\epsilon_2\rangle\,\,\cdots\,\,|\epsilon_n\rangle\Big]\begin{bmatrix} o_{11} & o_{12} & \cdots & o_{1n} \\ o_{21} & o_{22} & \cdots & o_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ o_{n1} & o_{n2} & \cdots & o_{nn} \end{bmatrix}\,,\tag{3}\end{equation}
- if we multiply $\left[\begin{array}{c}\langle \epsilon_1| \\ \vdots \\ \langle \epsilon_n| \end{array}\right]$ from the left on both side of Eq. (3) and use the orthonormal property (1), we obtain \begin{equation}\left[\begin{array}{c}\langle \epsilon_1| \\ \langle \epsilon_2 \\ \vdots \\ \langle \epsilon_n| \end{array}\right]\cal{O}\, \Big[|\epsilon_1\rangle\,\,|\epsilon_2\rangle\,\,\cdots\,\,| \epsilon_n\rangle\Big]=\begin{bmatrix} o_{11} & o_{12} & \cdots & o_{1n} \\ o_{21} & o_{22} & \cdots & o_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ o_{n1} & o_{n2} & \cdots & o_{nn} \end{bmatrix}\,,\end{equation} that is \begin{equation} o_{ij}=\langle \epsilon_i | \cal{O}|\epsilon_j\rangle\,.\tag{4}\end{equation} The matrix element of an operator within the orthonormal basis can be obtained simply by multiplying the corresponding bra and ket from the two sides of the operator.
- if we multiply $\left[\begin{array}{c}\langle \epsilon_1| \\ \vdots \\ \langle \epsilon_n| \end{array}\right]$ from the right on both side of Eq. (3) and use the completeness property (2), we obtain \begin{equation} \cal{O}\, =\Big[|\epsilon_1\rangle\,\,|\epsilon_2\rangle\,\,\cdots\,\,|\epsilon_n\rangle\Big]\begin{bmatrix} o_{11} & o_{12} & \cdots & o_{1n} \\ o_{21} & o_{22} & \cdots & o_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ o_{n1} & o_{n2} & \cdots & o_{nn} \end{bmatrix}\left[\begin{array}{c}\langle \epsilon_1| \\ \langle \epsilon_2 \\ \vdots \\ \langle \epsilon_n| \end{array}\right]\,,\end{equation}that is \begin{equation} \cal{O}=\sum_{i,j=1}^n|\epsilon_i\rangle\,o_{ij}\,\langle\epsilon_j|\,.\tag{5}\end{equation}
Note that Eq. (5) is usually obtained by inserting the completeness relation (2) on both sides of the operator: \begin{equation}\cal{O}=\left(\sum_{i=1}^n|\epsilon_i\rangle\langle \epsilon_i|\right)\cal{O}\left(\sum_{j=1}^n|\epsilon_j\rangle\langle \epsilon_j|\right)=\sum_{i,j=1}^n|\epsilon_i\rangle\langle \epsilon_i|\cal{O}|\epsilon_j\rangle\langle \epsilon_j|=\sum_{i,j=1}^n|\epsilon_i\rangle o_{ij}\langle \epsilon_j|\,.\end{equation}
Operators in Quantum Mechanics
Adjoint Operator
Given an inner product, any operator $\cal{O}$ in the form of Eq. (5) defines an adjoint operator \begin{equation}\cal{O}^{\dagger}\equiv \sum_{i,j=1}^n|\epsilon_i\rangle\,o^*_{ji}\,\langle\epsilon_j|\,,\tag{6}\end{equation} so that \begin{equation} \Big(\cal{O}|\phi\rangle\,,|\psi\rangle \Big)=\Big(|\phi\rangle\,,\cal{O}^{\dagger}|\psi\rangle \Big)\,.\tag{7}\end{equation}
[Exercise 1] Verify that Eq. (7) holds.
[Solution] \begin{eqnarray}\text{LHS}&=&\Big(\sum_{i,j=1}^n|\epsilon_i\rangle o_{ij}\langle \epsilon_j|\phi\rangle\,,|\psi\rangle\Big)=\sum_{i,j=1}^n\phi_j^* o^*_{ij}\Big(|\epsilon_i\rangle\,,|\psi\rangle\Big)=\sum_{i,j=1}^n\phi_j^* o^*_{ij}\psi_i\,,\\ \text{RHS}&=&\Big(|\phi\rangle, \sum_{i,j=1}^n|\epsilon_i\rangle\,o^*_{ji}\,\langle\epsilon_j|\psi\rangle\Big)=\sum_{i,j=1}^n o^*_{ij}\psi_j \Big( |\phi\rangle\,, |\epsilon_i\rangle\Big)=\sum_{i,j=1}^n\phi_i^* o^*_{ji}\psi_j\,.\end{eqnarray}
Hermitian Operator
A Hermitian operator $\cal{H}$ satisfies the relation \begin{equation} \Big(\cal{H}|\phi\rangle\,,|\psi\rangle \Big)= \Big(|\phi\rangle\,,\cal{H}|\psi\rangle \Big)\,.\tag{8}\end{equation} That is, a Hermitian operator can always be flipped over to the other side in an inner product. Because of Eq. (7), an equivalent definition of Hermitian operators is \begin{equation}\cal{H}=\cal{H}^{\dagger}\,.\end{equation}
[Exercise 2] Prove that all the eigenvalues of Hermitian operators are real.
[Solution] For an eigenstate $|\lambda_i\rangle$ that satisfies $\cal{H}|\lambda_i\rangle=\lambda_i\,|\lambda_i\rangle$, we can compute \begin{eqnarray}\Big(\cal{H}|\lambda_i\rangle\,,\, |\lambda_i\rangle\Big)&=& \Big(\lambda_i\, |\lambda_i\rangle\,,\, |\lambda_i\rangle\Big)=\lambda^*_i\,\Big(|\lambda_i\rangle,\, |\lambda_i\rangle\Big)=\lambda^*_i\,,\\ \Big(|\lambda_i\rangle\,, \,\cal{H}|\lambda_i\rangle\Big)&=& \Big( |\lambda_i\rangle\,,\,\lambda_i\,|\lambda_i\rangle\Big)=\lambda_i\,\Big(|\lambda_i\rangle,\, |\lambda_i\rangle\Big)=\lambda_i\,.\end{eqnarray} As a result, we have $\lambda_i=\lambda^*_i$ when $\cal{H}$ is Hermitian.
[Exercise 3] Prove that eigenstates of Hermitian operators with different eigenvalues are orthogonal.
[Solution] For Hermitian operator $\cal{H}$, there is relation \begin{equation} \Big(\cal{H}|\lambda_i\rangle\,,\, |\lambda_j\rangle\Big)=\Big( |\lambda_i\rangle\,,\,\cal{H}|\lambda_j\rangle\Big)\,.\end{equation} The left side is $\lambda^*_i \Big(|\lambda_i\rangle\,,\, |\lambda_j\rangle\Big)=\lambda_i\Big(|\lambda_i\rangle\,,\, |\lambda_j\rangle\Big)$ and the right side is $\lambda_j \Big(|\lambda_i\rangle\,,\, |\lambda_j\rangle\Big)$. If $\lambda_i \neq \lambda_j$, we have $\Big(|\lambda_i\rangle\,,\, |\lambda_j\rangle\Big)=0$.
Unitary Operator
An unitary operator $\cal{U}$ preserves the inner product \begin{equation}\Big(\cal{U}|\phi\rangle\,,\cal{U}|\psi\rangle \Big)= \Big(|\phi\rangle\,,|\psi\rangle \Big)\,.\tag{9}\end{equation}. Because of Eq. (7), an equivalent definition of unitary operators is \begin{equation}\cal{U}\cal{U}^{\dagger}=\cal{U}^{\dagger}\cal{U}=\cal{I}\,.\end{equation}
As shown in this post, sometimes it is easier to prove the unitarity by verifying Eq. (9).
Comments
Post a Comment