Pizza-slice contour
I occasionally browsed a youtube video on "2023 MIT Integration Bee". I thought it is a competition between students taking the course of calculus. I took a try and it turns out that I was not able to even solve the first problem in the allowed 4 mins.
The first problem is to solve \begin{equation} I \equiv \int_0^{\infty} \frac{\sqrt[3]{\tan x}}{(\sin x + \cos x)^2}dx\,.\tag{1}\end{equation} It is obvious that \begin{eqnarray}I &=& \int_0^{\infty} \frac{\sqrt[3]{\tan x}}{(\tan x + 1)^2} \frac{dx}{\cos^2 x} = \int_0^{\infty} \frac{\sqrt[3]{x}}{(x+1)^2}dx\\&=&-\left. \frac{\sqrt[3]{x}}{x+1}\right|_0^{\infty} + \int_0^{\infty} \frac{d\,\sqrt[3]{x}}{x+1}\\&=& \int_0^{\infty}\frac{dx}{x^3+1}\,.\tag{2}\end{eqnarray}
I know how to solve the indefinite integral $\int\frac{dx}{x^3+1}$, but I was not able to accomplish the entire calculation within 4 mins. Here is another youtube video that provides step-by-step calculations. The result is \begin{equation}\int\frac{dx}{x^3+1}=\frac{1}{6} \log \frac{(x+1)^2}{x^2-x+1} + \frac{1}{\sqrt{3}}\,\arctan \left(\frac{2x-1}{\sqrt{3}}\right)\,.\end{equation} As a result, we have \begin{equation} \int_0^{\infty}\frac{dx}{x^3+1} = \frac{1}{\sqrt{3}}\left(\frac{\pi}{2} - \left(-\frac{\pi}{6}\right) \right)=\frac{2\sqrt{3}}{9}\pi\,.\end{equation}
There is another way to calculate the definite integral $\int_0^{\infty}\frac{dx}{x^3+1}$ without doing the indefinite integral $\int\frac{dx}{x^3+1}$. Consider the following pizza-slice contour in the complex plane:
For such contour, we know that \begin{eqnarray} \oint_C \frac{dz}{z^3+1} &=& 2\pi i\, \text{Res}\left[\frac{1}{z^3+1}, e^{i\pi /3}\right]\\ &=& 2\pi i\,\lim_{z\rightarrow e^{i\pi /3}} \frac{z-e^{i\pi /3}}{z^3+1}=2\pi i\,\lim_{z\rightarrow e^{i\pi /3}}\frac{1}{3z^2} = \frac{2\pi i}{3 e^{i2\pi /3}} \,.\tag{3}\end{eqnarray} On the other hand, $\oint_C \frac{dz}{z^3+1}=\int_{C_1} \frac{dz}{z^3+1} +\int_{C_2} \frac{dz}{z^3+1} + \int_{C_3} \frac{dz}{z^3+1}$. The first term is our integral $I$ as in Eq. (2). The second term is \begin{equation} \int_{C_2} \frac{dz}{z^3+1} =\lim_{R\rightarrow\infty} \int_{0}^{2\pi/3} \frac{R}{R^3e^{i3\theta}+1}de^{i\theta} = 0\,,\end{equation} while the third term is \begin{equation} \int_{C_3} \frac{dz}{z^3+1} = - \int_{0}^{\infty} \frac{e^{i2\pi/3}}{r^3+1}dr=-e^{i2\pi/3} I\,.\end{equation} Therefore, we have \begin{equation} I - e^{i2\pi/3} I + 0 = \frac{2\pi i}{3 e^{i2\pi /3}}\,,\tag{4}\end{equation} from which we can solve \begin{equation} I =\frac{2\pi i}{3 e^{i2\pi /3}(1-e^{i2\pi/3})}=\frac{2\sqrt{3}}{9}\pi\,.\end{equation} In general, following the above recipe, we can calculate \begin{equation} \int_0^{\infty}\frac{dx}{x^n+1} = \frac{2\pi i}{n\,e^{i(n-1)\pi/n}\,(1-e^{i2\pi/n})}=\frac{\pi}{n\sin \frac{\pi}{n}}\,.\tag{5} \end{equation}
BTW, in my impression, the first time I saw the application of pizza-slice contour in physics is in the undergraduate quantum mechanics course. The Green function of free particle in quantum mechanics is \begin{equation} G(x,t) = \int \frac{d^3p}{(2\pi \hbar)^3} \exp^{i p\cdot x /\hbar -i p^2t/(2m\hbar)}\,,\end{equation} which can be reduced to the calculation of the integral \begin{equation} \int_0^{\infty} dx\, e^{ix^2}\tag{6}\end{equation} after some algebra. To solve the integral (6), we can natively let $a=-i$ in the Gaussian integral: \begin{equation} \int_0^{\infty} dx\, e^{-ax^2}=\frac{1}{2} \int_{-\infty}^{\infty} dx\, e^{-ax^2}=\frac{1}{2}\sqrt{\frac{\pi}{a}}\,.\end{equation} To justify the correctness of this naive approach, we consider another pizza-slice contour as in Fig. 2:
\begin{equation} \int_{C_1} dz e^{iz^2} + \int_{C_2} dz e^{iz^2}+ \int_{C_3} dz e^{iz^2} = \oint_C dz e^{iz^2} = 0\,. \end{equation} The first term is the integral (6). The second term is 0 as $R\rightarrow \infty$. The third term is \begin{equation}\int_{C_3} dz e^{iz^2} = -\int_{0}^{\infty} e^{i\pi/4} dr \,e^{i(re^{i\pi/4})^2}=-e^{i\pi/4} \int_{0}^{\infty} dr e^{-r^2} = -\frac{\sqrt{\pi}}{2}e^{i\pi/4}=-\frac{1}{2}\sqrt{i\pi}\,.\end{equation}
The intuition of constructing the pizza-slice contour in Fig. 2 is simply to "rotate" the integral along the real axis to another line $re^{-i\theta}$ for some $\theta$ such that the integrand along the new line becomes Gaussian $e^{-r^2}$. With exactly the same motivation, in quantum field theory, a more commonly rotations is the so-called Wick rotation. The corresponding double pizza-slice contour shown as in Fig. 3, which transforms the integration along the real axis to the imaginary axis.
Comments
Post a Comment