Euler Angles
Before talking about the Euler angles and the rigid body motion, we first briefly review the rotations of a point in a single fixed world frame. Given a point $\mathbf{V}\equiv [x, y, z]^T$, if we rotate it along the z-axis by an angle $\theta$ to a new position $\mathbf{V'}\equiv [x', y', z']^T$, then we have the relation \begin{equation} \mathbf{V'}= R_Z(\theta)\mathbf{V}\,,\quad R_Z(\theta)\equiv\left[\begin{array}[ccc]& \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{array}\right]\,.\tag{1}\end{equation} If we continue to rotate $\mathbf{V'}$ along the x-axis by another angle $\phi$, the point ends with the coordinates $\mathbf{V''}\equiv [x'', y'', z'']^T$ with relation \begin{equation} \mathbf{V''}= R_X(\phi)\mathbf{V'}\,,\quad R_X(\phi)\equiv\left[\begin{array}[ccc]& 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\