Lorentz transformation (III)
Problem: Let $p^{\mu}\equiv[|\mathbf{p}|, p^1, p^2, p^3]^T$ be the four-momentum of a massless particle, assuming $c=1$. In some inertial frame, such four-momentum becomes to $k^{\mu}\equiv[\kappa, 0, 0, \kappa]^T$. The problem is to find a Lorentz transformation (matrix) $L^{\mu}_{\,\,\nu}(p)$ such that $p^{\mu} =L^{\mu}_{\,\,\nu}(p)\,k^{\nu}$. (This problem is about the proof of Eq. (2.5.44) in Weinberg's QFT book, Volume I) Solution: To transform $k^{\mu}$ to $p^{\mu}$, we can first boost $k^{\mu}$ to $[|\mathbf{p}|, 0, 0, |\mathbf{p}|]^T$ followed by a spatial rotation to $p^{\mu}$. Recall the Lorentz boost on the energy and momentum, \begin{equation}\begin{split}E'&=&\gamma\,(E-v\,p^3)\,,\\{p'}^3&=&\gamma\,(p^3-v\,E)\,,\end{split} \end{equation} with $\gamma \equiv 1/\sqrt{1-v^2}$. In the matrix form, \begin{equation}\left[\begin{matrix}E' \\ 0 \\ 0 \\ {p'}^3\end{matrix}\right]\equiv B(v)\, \left[\begin{matrix}E \\ 0 \\...