Quantum Computing: Quantum Machine Learning
We introduced the HHL algorithm and its subroute quantum phase estimation (QPE) algorithm in this blog . Now we introduce two quantum versions of machine learning algorithms: quantum principal component analysis (qPCA) and quantum support vector machine (qSVM), which replies on QPE and HHL, respectively. Data Preparation Suppose we have $n$ data samples and each data sample has $p$ features, i.e., $\mathbf{x}^{(i)}\equiv[x_1^{(i)}, \cdots, x_p^{(i)}]^T$ for $i=1,\cdots, n$. To apply quantum algorithms, we encode each data sample $\mathbf{x}^{(i)}$ in a quantum state \begin{eqnarray}\mathbf{x}^{(i)}\equiv[x_1^{(i)}, \cdots, x_p^{(i)}]^T \quad\xrightarrow{p=2^m} \quad |\psi_i\rangle\equiv \frac{1}{\left|\left| \mathbf{x}^{(i)}\right|\right|_2}\sum_{\tau\in \{0,1\}^m}x_{\tau}^{(i)}|\tau\rangle\,.\tag{1}\end{eqnarray} To encode the entire dataset, we entangle the data state $|\psi_i\rangle$ with an auxiliary state $|i\rangle$ and form a pure state \begin{equation}|\psi\rangle\equiv\sum_{i=...