Special Euclidean group
Problem: Show that the Lorentz transformation W that keeps k^{\mu}\equiv[1, 0, 0, 1]^T unchanged forms a two-dimensional Euclidean group SE(2).
Solution:
As shown in this post, the general solution of the Lorentz transformation W that satisfies W^{\mu}_{\,\,\,\,\nu}\,k^{\nu}=k^{\mu} can be parametrized in three parameters \alpha,\beta,\theta as \begin{equation}W(\alpha, \beta, \theta)=\left[\begin{matrix} 1+(\alpha^2+\beta^2)/2 & -\alpha & -\beta & -(\alpha^2+\beta^2)/2 \\ -\alpha & 1 & 0 & \alpha \\ -\beta & 0 & 1 & \beta \\ (\alpha^2+\beta^2)/2 & -\alpha & -\beta & 1-(\alpha^2+\beta^2)/2 \end{matrix}\right]\left[\begin{matrix} 1 & & & \\ & \cos\theta & -\sin\theta & \\ & \sin\theta & \cos\theta & \\ & & & 1\end{matrix}\right]\,.\tag{1}\end{equation}
To work out the Lie algebra, we expand W(\alpha, \beta, \theta) in the first order of \alpha, \beta, \theta as \begin{eqnarray}W(\alpha, \beta, \theta)&\approx&\left[\begin{matrix} 1 & -\alpha & -\beta & 0 \\ -\alpha & 1 & 0 & \alpha \\ -\beta & 0 & 1 & \beta \\ 0 & -\alpha & -\beta & 1 \end{matrix}\right]\left[\begin{matrix} 1 & & & \\ & 1 & -\theta & \\ & \theta & 1 & \\ & & & 1\end{matrix}\right]\approx \left[\begin{matrix} 1 & -\alpha & -\beta & 0 \\ -\alpha & 1 & -\theta & \alpha \\ -\beta & \theta & 1 & \beta \\ 0 & -\alpha & -\beta & 1 \end{matrix}\right]\\ \\&\equiv& I - i \alpha A -i\beta B - i\theta J\,,\end{eqnarray} where the generators are \begin{eqnarray}A\equiv\left[\begin{matrix} & -i & & \\ -i & & & i \\ & & & \\ & -i & & \end{matrix}\right]\,,\quad B\equiv\left[\begin{matrix} & & -i & \\ & & & \\ -i & & & i \\ & & -i & \end{matrix}\right]\,,\quad J\equiv\left[\begin{matrix} & & & \\ & & -i & \\ & i & & \\ & & & \end{matrix}\right] \,.\tag{2}\end{eqnarray} The generator J represents a rotation of the x-y plane, which is obvious that keeps [1, 0, 0, 1]^T unchanged. In contrast, the generators A and B are less obvious: A represents a boost along x-direction plus a rotation of the x-z plane; B represents a boost along y-direction plus a rotation of the y-z plane.
With the explicit matrix forms (2), one can verify that \begin{equation}[A,\,B] = 0\,,\quad [J,\,A]=i\,B\,,\quad [J,\,B]=-i\,A\,.\tag{3} \end{equation} As we will see below, the commutation relations (3) are exactly the Lie algebra of two-dimensional special Euclidean group SE(2).
SE(2) group
By definition, the two-dimensional special Euclidean group SE(2) consists of two-dimensional rotations plus translations. In terms of the homogenous coordinate [x, y, 1], the transformation of SE(2) can be represented as \begin{equation}\left[\begin{matrix}x' \\ y' \\ 1\end{matrix}\right]=\left[\begin{matrix}\cos\theta & -\sin\theta & \alpha \\ \sin\theta & \cos\theta & \beta \\ 0 & 0 & 1\end{matrix}\right]\left[\begin{matrix}x \\ y \\ 1\end{matrix}\right]\,,\end{equation} where \theta is the rotation angle along the z-axis and [\alpha,\beta]^T is the translation vector within the x-y plane.
Expand the above transformation matrix to the first order of \alpha, \beta, \theta: \begin{equation}\left[\begin{matrix}\cos\theta & -\sin\theta & \alpha \\ \sin\theta & \cos\theta & \beta \\ 0 & 0 & 1\end{matrix}\right]\approx\left[\begin{matrix}1 & -\theta & \alpha \\ \theta & 1 & \beta \\ 0 & 0 & 1\end{matrix}\right]\equiv I - i \alpha A - i\beta B - i\theta J\,,\end{equation} where the generators are \begin{equation}A=\left[\begin{matrix}0 & 0 & i \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix}\right]\,,\quad B=\left[\begin{matrix}0 & 0 & 0 \\ 0 & 0 & i \\ 0 & 0 & 0\end{matrix}\right]\,,\quad J=\left[\begin{matrix}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{matrix}\right]\,.\tag{4} \end{equation} The generator J represents a rotation of the x-y plane and A\,(B) represents a translation along the x(y)-direction.
With the explicit matrix forms (4), one can work out the Lie algebra of SE(2): \begin{equation}[A,\,B] = 0\,,\quad [J,\,A]=i\,B\,,\quad [J,\,B]=-i\,A\,,\tag{5} \end{equation} which are the same as (3).
Therefore, we can conclude that
- The matrices (4) are the 3-dimensional representation of SE(2) group, and the parameters \alpha,\beta are related a 2-dimensional translation.
- The matrices (2) are the 4-dimensional representation of SE(2) group, and the parameters \alpha,\beta are related to the Lorentz boosts followed by rotations.
Irreducible representation of SE(2)
To find out the irreducible representation of SE(2), we define a set of new operators \begin{equation}T^2\equiv A^2+B^2\,,\quad T_{\pm}\equiv A \pm i\,B\,,\end{equation} then the Lie algebra (5) becomes \begin{equation} [T^2, \,T_{\pm}] = 0\,,\quad [T_+,\,T_-]=0\,,\quad [T^2,\,J] = 0\,,\quad [J,\,T_{\pm}]=\pm T_{\pm}\,. \end{equation}
Since T^2 and J commute, we can introduce a state |t,j\rangle such that \begin{equation}T^2\,|t,j\rangle=t^2\,|t,j\rangle\,,\quad J\,|t,j\rangle=j\,|t,j\rangle\,.\tag{6}\end{equation} The state |t,j\rangle in (6) is the basis of the SE(2) irreducible representation. What about the state T_{\pm}|t,j\rangle? Consider \begin{eqnarray}T^2\,T_{\pm}|t,j\rangle&=&T_{\pm}\,T^2|t,j\rangle = T_{\pm}\,t^2|t,j\rangle = t^2\, T_{\pm}|t,j\rangle\,,\\ J\,T_{\pm}|t,j\rangle &=& T_{\pm}\,J|t,j\rangle \pm T_{\pm}|t,j\rangle=T_{\pm}\,j|t,j\rangle \pm T_{\pm}|t,j\rangle = \left(j\pm 1\right)\,T_{\pm}|t,j\rangle\,, \end{eqnarray} we can conclude that T_{\pm}|t,j\rangle is the state |t,j\pm 1\rangle up to a constant. The constant can be obtained by considering the inner product \begin{equation}\langle t,j|T^{\dagger}_{\pm}\,T_{\pm}|t,j\rangle= \langle t, j|\,T^2\,|t,j\rangle = t^2\langle t, j|t,j\rangle = t^2\,.\end{equation} As a result, we have \begin{equation}T_{\pm}\,|t,j\rangle=\pm\frac{t}{i}\,|t,j\pm 1\rangle\,,\end{equation} where the phase factor \pm 1/i is chosen for other convenience.
The simplest case is the "degenerate" representation when t=0. In this case, we have \begin{equation}J\,|0,j\rangle = j\,|0, j\rangle\,,\quad T^2|0,j\rangle = T_{\pm}|0,j\rangle=A|0,j\rangle=B|0,j\rangle = 0\,.\end{equation} The degenerate representation of SE(2) is \begin{equation}\langle 0, j'| \exp\left[-i\alpha A - i\beta B - i\theta J\right]|0, j\rangle=e^{-i\,j\,\theta}\delta_{j',j}\,.\end{equation}
Comments
Post a Comment