Review of Linear Algebra in Quantum Mechanics (II)
Basis
A set of vectors |\alpha_1\rangle, \cdots, |\alpha_n\rangle is a basis of a vector space if- |\alpha_1\rangle, \cdots, |\alpha_n\rangle are linearly independent. That is, the only solution of the equation \begin{equation}x_1 |\alpha_1\rangle+x_2 |\alpha_2\rangle+\cdots + x_n |\alpha_n\rangle =\mathbf{0}\end{equation} is x_1=\cdots=x_n=0.
- Any vector |\psi\rangle in the vector space is a linear combination of |\alpha_1\rangle, \cdots, |\alpha_n\rangle, i.e. \begin{equation}|\psi\rangle =c_1 |\alpha_1\rangle+c_2 |\alpha_2\rangle+\cdots + c_n |\alpha_n\rangle\end{equation} for c_1,\cdots, c_n\in \mathbb{C}.
[Exercise 1] If there is vector |\psi\rangle that can not be a linear combination of linearly independent vectors |\alpha_1\rangle, \cdots, |\alpha_n\rangle, then |\alpha_1\rangle, \cdots, |\alpha_n\rangle, |\psi\rangle are linearly independent.
[Solution] Consider the equation x_1 |\alpha_1\rangle+\cdots + x_n |\alpha_n\rangle +d|\psi\rangle =\mathbf{0}, we have d=0. Otherwise, we have the relation |\psi\rangle=\sum_{i=1}^n\left(-c_i/d\right)|\alpha_i\rangle, contradicting with the assumption. The equation then reduces to x_1 |\alpha_1\rangle+\cdots + x_n |\alpha_n\rangle =\mathbf{0} and thus x_1=\cdots=x_n=0.
[Exercise 2] Prove that the liner combination in the definition of basis is unique.
[Solution] Suppose |\psi\rangle =\sum_{i=1}^n c_i |\alpha_i\rangle=\sum_{i=1}^nd_i |\alpha_i\rangle, then we have \sum_{i=1}^n (c_i-d_i) |\alpha_i\rangle=\mathbf{0}. Since |\alpha_1\rangle, \cdots, |\alpha_n\rangle are linear independent, we have c_1=d_1,\cdots, c_n=d_n.
Note:- A basis is of the maximal number of linearly independent vectors.
- Given a set of linearly independent vectors, we can expand the set to be a basis by iteratively adding in a vector that can not be to linear combination of the vectors in the current set.
- |\alpha_1\rangle, \cdots, |\alpha_n\rangle are linearly independent. That is, the only solution of the equation \begin{equation}x_1 |\alpha_1\rangle+x_2 |\alpha_2\rangle+\cdots + x_n |\alpha_n\rangle =\mathbf{0}\end{equation} is x_1=\cdots=x_n=0.
- Any vector |\psi\rangle in the vector space is a linear combination of |\alpha_1\rangle, \cdots, |\alpha_n\rangle, i.e. \begin{equation}|\psi\rangle =c_1 |\alpha_1\rangle+c_2 |\alpha_2\rangle+\cdots + c_n |\alpha_n\rangle\end{equation} for c_1,\cdots, c_n\in \mathbb{C}.
[Exercise 1] If there is vector |\psi\rangle that can not be a linear combination of linearly independent vectors |\alpha_1\rangle, \cdots, |\alpha_n\rangle, then |\alpha_1\rangle, \cdots, |\alpha_n\rangle, |\psi\rangle are linearly independent.
[Solution] Consider the equation x_1 |\alpha_1\rangle+\cdots + x_n |\alpha_n\rangle +d|\psi\rangle =\mathbf{0}, we have d=0. Otherwise, we have the relation |\psi\rangle=\sum_{i=1}^n\left(-c_i/d\right)|\alpha_i\rangle, contradicting with the assumption. The equation then reduces to x_1 |\alpha_1\rangle+\cdots + x_n |\alpha_n\rangle =\mathbf{0} and thus x_1=\cdots=x_n=0.
[Exercise 2] Prove that the liner combination in the definition of basis is unique.
- A basis is of the maximal number of linearly independent vectors.
- Given a set of linearly independent vectors, we can expand the set to be a basis by iteratively adding in a vector that can not be to linear combination of the vectors in the current set.
Linear transformation
Operators in quantum mechanics are linear transformations that map one vector to another vector satisfying the linear property \begin{equation}\cal{O}\Big(c_1|\psi\rangle + c_2|\phi\rangle\Big)=c_1\cal{O}|\psi\rangle + c_2 \cal{O}|\phi\rangle\,.\end{equation} The only exception is the time-reversal operator which turns out be antilinear: \begin{equation}\cal{T}\Big(c_1|\psi\rangle + c_2|\phi\rangle\Big)=c^*_1\,\cal{T}|\psi\rangle + c^*_2\, \cal{T}|\phi\rangle\,.\end{equation}
A linear transformation is fully described by its transformation on the basis \cal{O}|\alpha_j\rangle for j=1,\cdots, n. As a vector, \cal{O}|\alpha_j\rangle can also be written as a linear combination of the basis: \begin{equation} {\cal{O}}|\alpha_j\rangle =O_{1j}|\alpha_1\rangle + O_{2j}|\alpha_2\rangle +\cdots+ O_{nj}|\alpha_n\rangle = \Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]\begin{bmatrix} O_{1j} \\ O_{2j} \\ \vdots \\ O_{nj} \end{bmatrix}\end{equation} for some coefficients O_{1j},\cdots, O_{nj}\in \mathbb{C}. As a result, \begin{equation} \cal{O}\, \Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]=\Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]\underset{\text{matrix }\mathbf{O}}{\underbrace{\begin{bmatrix} O_{11} & O_{12} & \cdots & O_{1n} \\ O_{21} & O_{22} & \cdots & O_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ O_{n1} & O_{n2} & \cdots & O_{nn} \end{bmatrix}}}\,.\tag{1}\end{equation} Remarks:
- Under a basis, there is one-to-one correspondence between an operator and its matrix form through Eq. (1). We can use the words operator and matrix interchangeably.
- There are addition and scaling operations for operators as defined by \begin{eqnarray}\Big({\cal{O}_1}+{\cal{O}_2}\Big)\,|\psi\rangle &:=& {\cal{O}_1}|\psi\rangle+{\cal{O}_2}|\psi\rangle\\ \Big(c\,\cal{O}\Big)\,|\psi\rangle &:=&c\Big( {\cal{O}}|\psi\rangle\Big)\end{eqnarray} for any |\psi\rangle, which corresponds to the addition and scaling of matrices by Eq. (1).
Operators in quantum mechanics are linear transformations that map one vector to another vector satisfying the linear property \begin{equation}\cal{O}\Big(c_1|\psi\rangle + c_2|\phi\rangle\Big)=c_1\cal{O}|\psi\rangle + c_2 \cal{O}|\phi\rangle\,.\end{equation} The only exception is the time-reversal operator which turns out be antilinear: \begin{equation}\cal{T}\Big(c_1|\psi\rangle + c_2|\phi\rangle\Big)=c^*_1\,\cal{T}|\psi\rangle + c^*_2\, \cal{T}|\phi\rangle\,.\end{equation}
A linear transformation is fully described by its transformation on the basis \cal{O}|\alpha_j\rangle for j=1,\cdots, n. As a vector, \cal{O}|\alpha_j\rangle can also be written as a linear combination of the basis: \begin{equation} {\cal{O}}|\alpha_j\rangle =O_{1j}|\alpha_1\rangle + O_{2j}|\alpha_2\rangle +\cdots+ O_{nj}|\alpha_n\rangle = \Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]\begin{bmatrix} O_{1j} \\ O_{2j} \\ \vdots \\ O_{nj} \end{bmatrix}\end{equation} for some coefficients O_{1j},\cdots, O_{nj}\in \mathbb{C}. As a result, \begin{equation} \cal{O}\, \Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]=\Big[|\alpha_1\rangle\,\,|\alpha_2\rangle\,\,\cdots\,\,|\alpha_n\rangle\Big]\underset{\text{matrix }\mathbf{O}}{\underbrace{\begin{bmatrix} O_{11} & O_{12} & \cdots & O_{1n} \\ O_{21} & O_{22} & \cdots & O_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ O_{n1} & O_{n2} & \cdots & O_{nn} \end{bmatrix}}}\,.\tag{1}\end{equation} Remarks:
- Under a basis, there is one-to-one correspondence between an operator and its matrix form through Eq. (1). We can use the words operator and matrix interchangeably.
- There are addition and scaling operations for operators as defined by \begin{eqnarray}\Big({\cal{O}_1}+{\cal{O}_2}\Big)\,|\psi\rangle &:=& {\cal{O}_1}|\psi\rangle+{\cal{O}_2}|\psi\rangle\\ \Big(c\,\cal{O}\Big)\,|\psi\rangle &:=&c\Big( {\cal{O}}|\psi\rangle\Big)\end{eqnarray} for any |\psi\rangle, which corresponds to the addition and scaling of matrices by Eq. (1).
Comments
Post a Comment