Classification of Lie Algebra

Recall that the Lie group representation only depends a linear combination of generators as in its exponential form  {\cal{D}}(\alpha)= e^{i\,\alpha^a {\cal{T}}_a}, we are able to choose a particular set of generators for the classification of Lie algebra.

We consider the compact Lie groups whose representation can always be unitary and thus their generators are Hermitian {\cal{T}}_a={\cal{T}}^{\dagger}_a.

Cartan generators

Out of all the generators, we can construct a maximal subset of mutually commuting Hermitian generators (Cartan generators), {\cal{H}}_i for i=1,\cdots, m, such that \begin{equation}{\cal{H}}_i={\cal{H}}^{\dagger}_i\,,\quad \Big[{\cal{H}}_i\,,{\cal{H}}_j\Big]=0\,,\quad\text{Tr}\left({\cal{H}}_i{\cal{H}}_j\right)=k_D\,\delta_{ij}\,\tag{1}\end{equation}

for some positive constant k_D.

The construction of such Cartan generators is in the following steps: 

  1. From the generators {\cal{T}}_1, \cdots,{\cal{T}}_N, we can pick a maximal subset of mutually commuting generators, say {\cal{T}}_1, \cdots,{\cal{T}}_m, such that \begin{equation}\Big[{\cal{T}}_i\,,{\cal{T}}_j\Big]=0\end{equation}
    for i,\,j=1,\cdots, m.
  2. Compute a m\times m matrix \mathbf{G} whose matrix element is defined by \begin{equation}\mathbf{G}_{ij}\equiv\text{Tr}({\cal{T}}_i\,{\cal{T}}_j)\end{equation}
    for i,\,j=1,\cdots, m.
  3. Since \mathbf{G} is a real symmetric matrix, it can be diagonalized \begin{equation}\mathbf{O}\,\mathbf{G}\,\mathbf{O}^T=\text{diag}[\lambda_1,\cdots, \lambda_m]\end{equation}
    by an orthonormal matrix \mathbf{O}.
  4. Finally, define a set of new generators \begin{equation}{\cal{H}}_i\equiv \sqrt{\frac{k_D}{\lambda_i}}\sum_{j=1}^m \mathbf{O}_{ij}\,{\cal{T}}_j\,,\end{equation}
    which satsifies all the properties in Eq. (1).
Remarks:
  • Cartan generators can be simultaneously diagonalized as \begin{equation}{\cal{H}}_i |\mu\rangle =\mu_i|\mu\rangle\,,\tag{2}\end{equation}
    where \mu is a m-component vector called weights.
  • In Lie algebra \mathfrak{su}(2), m=1, \cal{H}_1=\cal{J}_3 and k_D=1/2.

Raising and lowering operators

Raising operators

Out of the remaining generators, we can construct a set of raising operators \cal{E}_{\alpha} such that \begin{equation}\Big[{\cal{H}}_i\,,{\cal{E}}_{\alpha}\Big]=\alpha_i\,\cal{E}_{\alpha}\,,\tag{3}\end{equation}

where \alpha is a m-component vector called roots

Note that \cal{E}_{\alpha} in Eq. (3) can be up to an arbitrary constant. So we impose the same normalization as Eq. (1) \begin{equation}\text{Tr}\left({\cal{E}}^{\dagger}_{\alpha}\,{\cal{E}}_{\alpha}\right)=k_D\,.\tag{4}\end{equation}

Remarks:

  • The generator \cal{E}_{\alpha} in Eq. (3) is called raising operator because the weight increases from \mu to \mu+\alpha when acting \cal{E}_{\alpha} on the state |\mu\rangle in Eq. (2): \begin{equation} {\cal{H}}_i\,\cal{E}_{\alpha}|\mu\rangle =\cal{E}_{\alpha}\,{\cal{H}}_i|\mu\rangle+\left[{\cal{H}}_i\,,\cal{E}_{\alpha}\right]|\mu\rangle = (\mu_i+\alpha_i)\,\cal{E}_{\alpha}|\mu\rangle\,. \end{equation}
  • In Lie algebra \mathfrak{su}(2), such \cal{E}_{\alpha} is \frac{1}{\sqrt{2}}{\cal{J}}_+\equiv \frac{1}{\sqrt{2}}\left(\cal{J}_1+i\cal{J}_2\right) and the commutator (3) is [\cal{J}_3\,,\cal{J}_+]=\cal{J}_+.

The construction of the raising operator in Eq. (3) is in the following steps:

  1. For each Cartan generator \cal{H}_i, find its adjoint representation \cal{A}_i in the representation space spanned by {\cal{T}}_1, \cdots,{\cal{T}}_N.
  2. Find the eigenvalues and eigenvectors of \cal{A}_i \begin{equation}{\cal{A}}_i\,\left| {\cal{E}}_{\alpha}\right\rangle=\alpha_i\,\left| {\cal{E}}_{\alpha}\right\rangle\,.\tag{5}\end{equation}
  3. Expand the eigenvectors in the basis \begin{equation}\left| {\cal{E}}_{\alpha}\right\rangle =c_{m+1}\left| {\cal{T}}_{m+1}\right\rangle+c_{m+2}\left| {\cal{T}}_{m+2}\right\rangle+\cdots+c_{N}\left| {\cal{T}}_{N}\right\rangle\,.\tag{6}\end{equation}
  4. Finally, the generator \cal{E}_{\alpha} in Eq. (3) is \begin{equation} {\cal{E}}_{\alpha}\propto c_{m+1}\,{\cal{T}}_{m+1}+c_{m+2}\,{\cal{T}}_{m+2}+\cdots+c_{N}\,{\cal{T}}_{N}\,,\end{equation}
    up to a constant to in order to satisfy the normalization (3).
Remarks:

  • The key insight for the classification of Lie algebra is to work with adjoint representation because of the property \begin{equation}{\cal{A}}_i\,\left|{\cal{T}}_j\right\rangle=\left|\left[{\cal{H}}_i, {\cal{T}}_j\right]\right\rangle\end{equation}
    for the adjoint representation \cal{A}_i. This is why the eigenvalue equation of the adjoint representation (4) leads to the commutator (3).
  • The expansion (5) does not contain the terms of Cartan generators because {\cal{A}}_i\,\left|{\cal{H}}_j\right\rangle=\left|\left[{\cal{H}}_i, {\cal{H}}_j\right]\right\rangle=\mathbf{0}.
  • From Eq. (2) and (4), roots are the weights in the adjoint representation.

Lowering operators

By taking the Hermitian conjugate of the commutator (3), we have \begin{equation} \Big[{\cal{H}}_i\,,{\cal{E}}^{\dagger}_{\alpha}\Big]=-\alpha_i\,\cal{E}^{\dagger}_{\alpha}\,,\end{equation}
which suggests that we can take \begin{equation}\cal{E}^{\dagger}_{\alpha}=\cal{E}_{-\alpha}\,.\tag{7}\end{equation}
\cal{E}_{-\alpha} is the lowering operator that is similar to \frac{1}{\sqrt{2}}{\cal{J}}_-\equiv \frac{1}{\sqrt{2}}\left(\cal{J}_1-i\cal{J}_2\right) in Lie algebra \mathfrak{su}(2).

Finally, in Lie algebra \mathfrak{su}(2), there is also commutator \left[\cal{J}_+\,,\cal{J}_-\right]=2\,\cal{J}_3. This motivates to consider the commutator \Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]. By the Jacobi identity, we have \begin{equation}\Big[{\cal{H}}_i\,,\Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]\Big]=\Big[\Big[{\cal{H}}_i\,,{\cal{E}}_{\alpha}\Big]\,, {\cal{E}}_{-\alpha}\Big]+\Big[{\cal{E}}_{\alpha}\,,\Big[{\cal{H}}_i\,,{\cal{E}}_{-\alpha}\Big]\Big]=\left(\alpha_i-\alpha_i\right)\Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]=0\,,\end{equation}
which suggests that \Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big] is a linear combination of Cartan generators, i.e. \begin{equation}\Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]=\sum_{j=1}^m\beta^j {\cal{H}}_j\,.\end{equation}
To determine the coefficients \beta^i, we multiply \cal{H}_i on both sides of the above equation, take the trace, apply Eq. (1) and (8), and obtain \begin{equation}\beta^i=\frac{1}{k_D}\text{Tr}\left(\Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]{\cal{H}}_i\right)=\frac{1}{k_D}\text{Tr}\left(\Big[{\cal{H}}_i\,,{\cal{E}}_{\alpha}\Big]{\cal{E}}_{-\alpha}\right)=\frac{\alpha_i}{k_D}\text{Tr}\left({\cal{E}}_{\alpha}{\cal{E}}_{-\alpha}\right)=\alpha_i\,.\end{equation}

Each root forms a \mathfrak{su}(2)

In summary, starting with the generators {\cal{T}}_1, \cdots,{\cal{T}}_N, we find a different set of generators, \cal{H}s and \cal{E}s, satisfying the commutation relations \begin{equation} \color{red}{\Big[{\cal{H}}_i\,,{\cal{E}}_{\pm\alpha}\Big]=\pm\alpha_i\,{\cal{E}}_{\pm\alpha}\,,\quad \Big[{\cal{E}}_{\alpha}\,,{\cal{E}}_{-\alpha}\Big]=\sum_{j=1}^m \alpha_j {\cal{H}}_j}\,.\tag{8}\end{equation}

For each root \alpha, let \begin{equation}{\cal{E}}_{\pm}\equiv\frac{1}{|\alpha|}{\cal{E}}_{\pm\alpha}\,,\quad{\cal{E}}_{3}\equiv\sum_{j=1}^m \frac{\alpha_j}{|\alpha|^2} {\cal{H}}_j\,,\tag{9}\end{equation}

where |\alpha|\equiv\sqrt{\sum_{j=1}^m\alpha^2_j}, the commutation relations (8) becomes \mathfrak{su}(2): \begin{equation}\Big[{\cal{E}}_{3}\,,{\cal{E}}_{\pm}\Big] =\pm {\cal{E}}_{\pm}\,,\quad\Big[{\cal{E}}_{+}\,,{\cal{E}}_{-}\Big] = {\cal{E}}_{3}\,,\end{equation}
which is identical to \mathfrak{su}(2) with \cal{E}_3=\cal{J}_3 and \cal{E}_{\pm}=\frac{1}{\sqrt{2}}\cal{J}_{\pm}.

Classification of Lie Algebra

From Eq. (2) and (9), we have \begin{equation}{\cal{E}}_3\,|\mu\rangle=\frac{\alpha\cdot\mu}{|\alpha|^2}\,|\mu\rangle\end{equation}
where \alpha\cdot\mu\equiv \sum_{j=1}^m\alpha_j\mu_j. Recall that in Lie algebra \mathfrak{su}(2), the eignvalue of \cal{J}_3 takes integer or half-integer values, so \begin{equation}2\frac{\alpha\cdot\mu}{|\alpha|^2}\in \mathbb{N}\,.\end{equation}
For finite representations, let p, q be the maximal integer such that {\cal{E}}^p_+|\mu\rangle\neq \mathbf{0} and {\cal{E}}^q_-|\mu\rangle\neq \mathbf{0}, then {\cal{E}}^p_+|\mu\rangle and {\cal{E}}^q_-|\mu\rangle are the highest and lowest weight states |j\rangle and |-j\rangle in Lie algebra \mathfrak{su}(2), and thus they should have the equal weight: \begin{equation}\frac{\alpha\cdot\mu}{|\alpha|^2}+p=j\,,\quad\frac{\alpha\cdot\mu}{|\alpha|^2}-q=-j\,.\quad \end{equation}
As a result, we have \begin{equation}\color{red}{\frac{\alpha\cdot\mu}{|\alpha|^2}=-\frac{1}{2}(p-q)}\,.\tag{10}\end{equation}
Eq. (10) is the key result for the classification of Lie algebra. 

Recall that roots are a special weights, we can take \mu in Eq. (10) as another root \beta, and obtain the constraint \begin{equation}\frac{\alpha\cdot\beta}{|\alpha|^2}=-\frac{1}{2}(p-q)\,.\end{equation}
Similarly, \begin{equation}\frac{\beta\cdot\alpha}{|\beta|^2}=-\frac{1}{2}(p'-q')\,.\end{equation}
Therefore, \begin{equation}\cos^2\theta_{\alpha\beta}\equiv \frac{(\alpha\cdot \beta)^2}{|\alpha|^2\,|\beta|^2}=\frac{(p-q)(p'-q')}{4}\,.\tag{11}\end{equation}
That is, the angle between any two root vectors can only take values among 0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ, 120^\circ, 135^\circ, 150^\circ and 180^\circ.

Comments

Popular posts from this blog

529 Plan

How to offset W2 tax

Retirement Accounts